Supporting Information (3 pages) to

Synthesis and Evaluation of Aminocyclopentitol Inhibitors of β-

Glucosidases, Olivier Boss, Emmanuel Leroy, Adrian Blaser and Jean-Louis Reymond*

Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland jean-louis.reymond@ioc.unibe.ch

Data for **9a**: $[\alpha]_{D}^{22} = +13.8^{\circ} (c=0.92 \text{ CHCl}_{3}).$

¹H-NMR (300 MHz, CDCl₃): 7.35 (*m*, 25H); 6.0 (br. *s*, 1H); 4.60-4.40 (*m*, 10H); 3.98 (*m*, 2H); 3.80 (*m*, 1H); 3.61 (*m*, 3H); 2.53 (*m*, 1H).

¹³C-NMR (75 MHz, CDCl₃): 138.8, 138.6, 138.4, 138.0, 128.6, 128.54, 128.5, 128.1, 128.0, 127.9, 127.7, 89.9, 84.2, 83.2, 76.5, 73.4, 72.2, 72.1, 71.7, 68.0, 63.9, 44.1.

HR-LSIMS: $C_{41}H_{44}NO_5(M^++1)$ calcd 630.321949, found 630.321410.

Data for **9b**: $[\alpha]_{D}^{22} = +6.57^{\circ}$ (c=0.35 CHCl₃).

¹H-NMR (300 MHz, CDCl₃): 7.37 (*m*, 25H); 4.63-4.47 (*m*, 7H); 3.98 (*m*, 6H); 3.75 (*dd*, 1H, *J* = 9.2 Hz, 7 Hz); 3.66 (*dd*, 1H, *J* = 9.2 Hz, 6.6 Hz); 3.40 (*dd*, 1H, *J* = 6.2 Hz, 9.1 Hz); 2.50 (*quint*, 1H, *J* = 6 Hz).

¹³C-NMR (75 MHz, CDCl₃): 138.3, 137.9, 128.3, 127.8, 127.7, 127.6, 127.5, 86.5, 84.9, 81.0, 76.6, 73.2, 71.9, 71.7, 68.6, 67.4, 42.6.

HR-LSIMS: $C_{41}H_{44}NO_5(M^++1)$ calcd 630.321949, found 630.321410.

Data for 12: $[\alpha]_D^{22} = -36^\circ$ (c=0.38, MeOH).

¹H-NMR (D₂O, 300 MHz): 8.40 (*s*, 0.4 H, H-NAc); 4.15 (*m*, H-C(4)); 3.72 (*m*, 3H, H-C(1) + H-C(2) + H-C(3)); 3.62 (*dd*, 1H, J = 11.8 Hz, 5.9Hz, H-C(6)); 3.52 (*dd*, 1H, J = 11.6 Hz, 5.9Hz, H-C(6)); 2.20 (*quint*, 1H, J = 5.1 Hz); 1.99 (*s*, 3H).

NOE: H-C(5)→H-C(4) (18 %); H-C(5)→H-C(1) (5 %).

¹³C-NMR: (D₂O, 75 MHz): 82.0, 79.5, 76.9 (H-<u>C</u>(1), H-<u>C</u>(2), H-<u>C</u>(3)), 61.6 (H₂-<u>C</u>(6)); 55.0 (H-<u>C</u>(4)); 47.2 (H-<u>C</u>(5)); 24.2 (CH₃).

EI-MS: 205 (M⁺).

Data for **1**^HCl: $[\alpha]_D^{22} = -92^\circ$ (c=0.13, MeOH).

¹H-NMR (300 MHz, D₂O): 3.80-3.57 (*m*, 6H); 2.24 (*m*, 1H, H-C(5)). ¹³C-NMR (75 MHz, D₂O): 81.5, 78.2, 75.8 (H- \underline{C} (1), H- \underline{C} (2), H- \underline{C} (3)), 60.7 (H₂- \underline{C} (6)), 56.3 (H- \underline{C} (4)), 45.0 (H- \underline{C} (5)).

ESI-MS: 164 (M⁺+1).

Data for **13**: $[\alpha]_D^{22} = -13^\circ$ (c=0.165, MeOH).

¹H-NMR (300 MHz, D_2O): 8.36 (*s*, 0.15 H, H-NAc); 3.99 (*dd*, 1H, *J* = 8.5 Hz, 5.2 Hz, H-C(1)); 3.85 (*t*, 1H, *J* = 9.4 Hz, H-C(4)); 3.67 (*m*, 3H, H-C(2) + H-C(3) + H-C(6)); 3.57 (*dd*, 1H, *J* = 11.4 Hz, 4.9 Hz, H-C(6)); 2.08 (*m*, 1H, H-C(5)); 1.92 (*s*, 3H).

NOE: H-C(5)→H-C(4) (3 %); H-C(5)→H-C(1) (16 %).

¹³C-NMR (D₂O, 75 MHz): 176.8 (C=O); 83.6, 81.8 (H-<u>C</u>(2), H-<u>C</u>(3)), 75.8 (H-<u>C</u>(1)), 61.4 (H₂-<u>C</u>(6)); 56.7 (H-<u>C</u>(4)); 48.1 (H-<u>C</u>(5)); 24.5 (CH₃).

ESI-MS: 206 (M⁺+1).

Data for **14** HCl: $[\alpha]_{D}^{22} = +17^{\circ}$ (c=0.195, MeOH).

¹H-NMR (300 MHz, D₂O): 3.95 (*dd*, 1H, J = 8.5 Hz, 5.9 Hz, H-C(1)); 3.72 - 3.63 (*m*, 4H, H-C(2) + H-C(3) + H₂-C(6)); 3.28 (*t*, 1H, J = 8.5 Hz, H-C(4)); 2.21 (*quint*, 1H, J = 8.0 Hz, H-C(5)). ¹³C-NMR (D₂O, 75 MHz): 81.5, 77.6, 73.9 (H-<u>C</u>(1), H-<u>C</u>(2), H-<u>C</u>(3)), 60.2 (H₂-<u>C</u>(6)), 57.5 (H-<u>C</u>(4)), 44.1 (H-<u>C</u>(5)).

ESI-MS: 164 (M⁺+1).

Data for **15** HCl: $[\alpha]_D^{22} = -56^\circ$ (c=0.125, MeOH).

¹H-NMR (300 MHz, D₂O): 3.82 - 3.68 (*m*, 6H); 3.12 (*q*, 2H, J = 7.4 Hz, N-C<u>H</u>₂-CH₃); 2.28 (*m*, 1H, H-C(5)); 1.20 (*t*, 3H, J = 7.4 Hz, N-CH₂-C<u>H</u>₃).

¹³C-NMR (D₂O, 75 MHz): 81.6, 78.3, 75.9 (H- $\underline{C}(1)$, H- $\underline{C}(2)$, H- $\underline{C}(3)$), 60.8 (H₂- $\underline{C}(6)$), 56.4 (H- $\underline{C}(4)$), 49.2 (N- \underline{C} H₂), 45.1 (H- $\underline{C}(5)$), 10.8 ((N-CH₂- \underline{C} H₃).

ESI-MS: 192 (M⁺+1).

Figure 1. Dixon plot of inhibition by **1** for *Caldocellum Saccharolyticum* β -glucosidase (**A**) and for almonds β -glucosidase (**B**).^{*a*}

^{*a*} measured in 0.1 M HEPES-Buffer at pH 6.8, at 25 °C, with inhibitor **1** at the indicated concentrations, and (A) 0.1 U/mL *Caldocellum Saccharolyticum* β-glucosidase and 4-nitrophenyl-β-D-glucoside as substrate S ($K_M = 970 \mu$ M), and almond β-glucosidase 4-nitrophenyl-β-D-glucoside as substrate S ($K_M >> 10 \text{ mM}$). The x-coordinate of the intersection between the two lines and the horizontal line at 1/V_{max} gives - K_i (**1**). V_{app} is given in relative units derived from the absorbency change at 405 nm as given by the instrument. See also legend of Table 1 in the paper.